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Abstract: Power flow control has become increasingly important in recent years in the area of smart power systems that have
to integrate increased shares of variable renewable energy sources. The unified power flow controller (UPFC) provides in real-
time, simultaneously or selectively, active and reactive power flow control as well as voltage control in smart power systems.
Several models and methods have been suggested for the control, analysis, operation, and planning of UPFCs in smart power
systems. This study introduces a review of the state-of-the-art models and methods of UPFCs in smart power systems,
analysing and classifying current and future research trends in this field.

1 Introduction
Smart power systems use state-of-the-art power electronics and
information and communication technologies to improve power
system control, security, reliability, and power quality with the
optimal use of resources to provide economical electricity to the
consumers. Flexible alternating current (ac) transmission system
(FACTS) incorporates power electronic-based controllers to
enhance controllability and increase power transfer capability.
FACTS controllers are very useful in smart power systems in order
to successfully integrate the increased shares of variable renewable
energy sources. FACTS controllers include a static var
compensator, a thyristor-controlled series capacitor, a static phase
shifter (SPS), a static synchronous compensator (STATCOM), a
static synchronous series compensator, and a unified power flow
controller (UPFC). The most versatile FACTS controller is the
UPFC since it is able to control, concurrently or selectively, the
active and reactive power flow through the transmission line, the
voltage magnitude, and the shunt reactive power compensation.

A lot of research works investigate FACTS controllers and their
applications to power systems. Review papers for FACTS
controllers are split into two categories: the first category reviews
several FACTS controllers [1–3], and the second category is
dedicated to the review of only one FACTS controller [4, 5]. More
specifically, Faruque et al. [1] review electromagnetic transient
models for FACTS; Singh et al. [2] review the impact of FACTS
controllers and distributed generation on power systems;
Gandoman et al. [3] review FACTS for power quality and efficient
utilisation of renewable energy systems; Iravani and Maratukulam
[4] review alternative semiconductor converter topologies feasible
for SPS; and Singh et al. [5] review STATCOM controllers.

The above bibliography review indicates that there is no review
paper dedicated on UPFC to cover the control, analysis, operation,
and planning of UPFCs in smart power systems. This study covers
this bibliography gap and introduces a taxonomy of models and
methods for the control, analysis, operation, and planning of
UPFCs in smart power systems, offering a unified presentation of a
relatively large number of selected research works [6–190].

The contributions of the study are manifold:

• It introduces a comprehensive review covering the control,
analysis, operation, and planning of UPFCs in smart power
systems.

• It introduces several well-designed taxonomies for UPFC, which
can help understand intriguing relationships among many
variables and concepts in the field. These taxonomies include

converter topologies for UPFCs, applications of UPFCs and D-
UPFCs, steady state models and dynamic models for UPFCs,
control methods for UPFCs, allocation methods for UPFCs, and
simulation tools for UPFCs. For example, according to the
introduced taxonomy, the UPFC control methods include linear
and linearised control, advanced control, decoupled control,
vector control, preventive control, coordinated control, sliding
mode control, robust control, adaptive control, hybrid control,
and intelligent control that consists of neural network (NN),
fuzzy logic, genetic algorithm, particle swarm optimisation
(PSO), and hybrid systems.

• It provides future research directions and sets the future research
goals of cost reduction, new cost-effective UPFC topologies,
and architectures with experimental validation, UPFC control
algorithms with reconfigurable architecture, wide area
coordinated control algorithms, new models, methods, and
simulation tools for the integration of UPFCs into smart power
system operations and planning.

• It serves as a guide to aid researchers and engineers on the
available models and methods as well as the future research
trends in the control, analysis, operation, and planning of UPFCs
in smart power systems.

This paper is organised as follows. Sections 2 and 3 outline the
UPFC technology and classify the converter topologies for UPFCs,
respectively. Section 4 classifies the applications of UPFCs in
smart power systems. Sections 5 and 6 provide an outline and
taxonomy of steady state and dynamic models for UPFCs,
respectively. Sections 7 and 8 outline and classify the control and
allocation methods for UPFCs, respectively. Section 9 discusses
the simulation tools for UPFCs. Section 10 proposes future
research ideas, and Section 11 concludes.

2 Technology
The UPFC consists of one shunt and one series converter that share
a back-to-back common direct current (dc) link provided by a dc
storage capacitor, as shown in Fig. 1. These two converters are
switching voltage source converters (VSCs) having semiconductor
devices with turn-off capability. Active power flows between the
series and shunt ac terminals through the common dc link.
However, reactive power does not flow through the dc link, i.e.
each converter independently supplies or absorbs reactive power. 

The series converter controls the active and reactive power of
the transmission line by injecting an ac voltage with controllable
magnitude and phase angle.
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The shunt converter supplies or absorbs the active power
required by the series converter. Moreover, the shunt converter can
supply or absorb reactive power, thus providing shunt reactive
power compensation.

3 Converter topologies
Converter topologies for UPFC are classified as (i) multi-pulse
converters and (ii) multi-level converters. For a given power, the
multi-pulse converter has better total harmonic distortion but
higher transformer complexity than the multi-level converter.
Multi-level converters for UPFC are classified as: (i) multipoint-
clamped converters (MPCs) or diode-clamped converters [45]; (ii)
chain converters or cascade converters [80, 184]; and (iii) nested-
cell converters or flying capacitor converters [64]. The UPFC
projects at Inez and Kangjin use three-level MPCs because this
topology provides a large range of voltage control [27].

A chopper stabilised diode-clamped seven-level converter
UPFC is studied in [45]. A UPFC using three neutral-point-
clamped (NPC) multilevel converters is investigated in [61]. A
UPFC based on flying capacitor multi-level VSCs with phase-
shifted sinusoidal pulse width modulation (SPWM) control using
insulated gate bipolar transistor (IGBT) technology is studied in
[64]. Conceptual design of a UPFC with SPWM control with VSCs
using either gate turn-off thyristors or IGBTs is presented in [20].

In comparison with the conventional UPFC with two VSCs and
two transformers, the transformer-less UPFC, composed of two
cascade multi-level converters, has significant advantages over the
conventional UPFC, such as low cost, low weight, high reliability,
and fast dynamic response [179, 184, 185].

4 Applications
The world's first UPFC was installed at Inez substation in eastern
Kentucky to increase power transfer capability and provide voltage
support [16, 27, 37]. Applications of UPFC in transmission
systems include: (i) power flow control and congestion
management [6, 55, 57, 75, 83, 93, 124, 138, 140, 183, 189]; (ii)
reactive power compensation and control [19, 118, 186]; (iii)
voltage control [7, 31, 41, 47, 48, 96, 137, 190]; (iv) power transfer
capability enhancement [13, 44, 77, 156, 168]; (v) power loss
reduction [57]; (vi) load curtailment reduction [182, 187]; (vii)
power quality improvement [137, 174]; (viii) power system
reliability enhancement [105, 125]; (ix) harmonic mitigation [10];
(x) improvement of transient stability [8, 18, 21, 86, 94, 112, 138,
145, 167]; (xi) damping inter-area and intra-area oscillations [28,
29, 40, 52, 67, 76, 111, 115, 118, 119, 121–123, 127, 146, 147,
151]; (xii) damping of sub-synchronous resonance [87, 153, 159].

The UPFC is also used in power distribution systems, where it
is sometimes called distribution-UPFC (D-UPFC). The
applications of D-UPFC include voltage control of distribution
system when voltage sags and swells occur [96]; line loss
minimisation in loop distribution systems [163]; and voltage
regulation in all nodes with simultaneous line loss minimisation in
loop distribution systems [134].

5 Steady state models
5.1 Power flow models

An approximate ac power flow model and a dc power flow model
are developed that ignore the resistance of UPFCs and transmission
lines [73]. The dc power flow model proposed in [73] was used to
derive modified distribution factors that model the impact of UPFC
on transmission system usage [84]. A UPFC power flow model is
proposed for the case in which the UPFC simultaneously controls
the active and reactive power as well as the voltage magnitude [9].

The general UPFC power flow model, composed of two voltage
sources and two impedances, is suitable to control individually or
in any combination the active and reactive power as well as the
voltage magnitude [14, 42]. This power flow model is used as a
basis to define a dispatch strategy to maximise the voltage stability
limited power transfer capability of a UPFC [88]. A variation of
the general UPFC power flow model [14] is proposed considering

variable series impedance and decoupling of real power exchange
of series and shunt converters [135]. In the power flow model
proposed in [14], the capacity limit of the shunt converter is
incorporated [50]. The power flow model proposed in [14] is used
in a probabilistic power flow model that is solved by Monte Carlo
simulation [158].

A power injection model (PIM) is developed and a power flow
method is proposed for the case in which the control parameters of
UPFC are known [38, 103] or unknown [34, 41, 46, 47, 59]. The
PIM model of UPFC has to be carefully used to ensure stable
operation [104]. The rules for handling the internal limits of UPFC
are incorporated into the PIM-based power flow method [48]. The
current-based power flow model of the UPFC considers the current
of the series converter as a variable, allowing easy manipulation of
current limitations in optimal power flow (OPF) [149]. A power
and current injection power flow model is proposed for the centre-
node UPFC [169].

A UPFC power flow model using auxiliary capacitors is
proposed to handle UPFC constraints [43]. A graphical method
determines the entire operating range of the UPFC and incorporates
all relevant UPFC limits for any point of UPFC installation in the
transmission line [72]. An indirect power flow model is proposed,
where an existing system with UPFCs is transformed into an
augmented system without UPFCs, thus enhancing the reusability
of existing power flow codes [113].

A power flow model, combing power and current injections, is
proposed for the generalised (multi-line) UPFC (GUPFC) [181].
The advantages and disadvantages of various power flow models
are analysed in [170].

5.2 OPF models

An OPF model shows that UPFC regulates power flow and
concurrently minimises power losses [15]. A nonlinear OPF model,
simulating different operating modes of UPFCs, is formulated and
solved using Newton's method [22]. An OPF model for the
generalised UPFC is formulated and solved using the interior point
method (IPM) [58]. An active and reactive OPF model for the
UPFC is solved by IPM [65]. The state estimation of power
systems with UPFCs is formulated as a nonlinear optimisation
problem and is solved by IPM [82]. An OPF model, solved by
Newton's method, provides optimal reference inputs to UPFC
[102]. An OPF model for the UPFC is solved by bat algorithm
[172].

5.3 Steady state harmonic models

A modular harmonic domain modelling method for the UPFC has
been proposed and validated using time domain simulation [95]. A
UPFC model in the form of equivalent impedance is proposed for
harmonic analysis [176].

6 Dynamic models
UPFC dynamic models are necessary to understand and control the
interactions between the power system and the UPFC. The
development of UPFC dynamic models is challenging, due to the
difficulty in the analysis of VSCs of the UPFC, since VSCs include

Fig. 1  Structure of UPFC located at the sending bus S of a transmission
line
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both discrete time events and continuous time dynamics because
the operation of VSCs and UPFC is based on a switching process.

6.1 Small signal dynamic models

Linearised small-signal dynamic models for UPFC are developed
for eigenvalue analysis, e.g. to investigate low-frequency
electromechanical modes and torsional oscillatory modes [9, 11].
UPFC power frequency models for a single machine to infinite bus
(SMIB) system are proposed in [8, 11]. A linearised Phillips–
Heffron dynamic model of a multi-machine power system with a
UPFC is developed [32] and applied to damp power system
oscillations [52]. A conceptually simple, linearised dynamic model,
with fast convergence characteristics is developed and applied for
inter-area power oscillation damping [76].

A UPFC power frequency model including dc link capacitor
dynamics for the multi-machine power system is proposed in [49].
An analytical dynamical model for unbalanced UPFC operation is
derived and tested on a SMIB system [63]. A fast time domain
method is proposed for the periodic steady state solution of
systems with consideration of UPFCs control and switching
(commutation) process [110]. The modal series analytical method
is proposed to analyse small signal oscillations and to study the
nonlinear interaction between the UPFC and the rest of the power
system [173].

6.2 Transient stability models

A state space transient stability model of the UPFC is proposed in
[9, 11]. A transient power flow model for UPFC is developed and
used to design the capacitance of the dc-link capacitor [60].

6.3 Fault analysis models

For multi-machine systems with UPFCs, an energy function is
developed and applied for direct estimation of the critical clearing
time [90]. A fault analysis model is developed to quantify the
impact of UPFC on the performance of the distance relay during
power swing [188].

In a transmission line with a UPFC, the fault location is
identified by a differential equation-based impedance calculation
method in combination with wavelet transform for fault transient
analysis [114]. An analytical approach calculates the impacts of
UPFC and offshore wind on distance relay tripping characteristics
[164]. In a transmission line with a UPFC, fault analysis is
implemented by fast discrete orthonormal Stockwell transform in
combination with support vector machines [171], and by sparse S-
transform [177].

6.4 Dynamic harmonic models

A dynamic harmonic domain model for the GUPFC is developed
and used to analyse the transient and steady state response of
GUPFC to voltage disturbances [154].

7 Control methods
Linear and linearised control methods are simple, easy to
implement, and reasonably effective. Traditional linear
proportional–integral (PI) control is typically optimised (tuned)
around a single operating point; however, it is less effective as the
system conditions move from the tuned operating point. Nonlinear
control methods are computationally more complex; however, they
are relatively independent of a particular operating point. There are
two general approaches for dealing with parameter uncertainties:
adaptive control and robust control. In adaptive control, the
parameters are identified online and then are used to tune the
controller. In robust control, a fixed controller is used, which is
typically designed considering the worst-case uncertainties.

7.1 Linear and linearised control

The feedback linearisation method tries to cancel the nonlinearities
of the system. Linear quadratic control (based on feedback

linearisation) shows very good performance in regulating the shunt
converter of the UPFC [12]. A direct feedback linearisation is
applied for coordinated excitation and UPFC control to improve
transient stability and voltage stability on a single-machine single-
load power system [56]. A feedback linearisation control method
for the UPFC enables independent control of real and reactive
power [107, 118]. A feedback linearisation control is proposed for
damping inter-area oscillations using UPFCs with ultra-capacitors
[123]. An adaptive input–output feedback linearisation control is
proposed for damping low-frequency oscillations in power systems
with multiple machines and multiple UPFCs [146].

A multivariable PI controller successfully fulfils the power flow
and voltage control functions of UPFC [66]. An instantaneous
power theory based PI control scheme for UPFC is proposed for
power flow control under both steady state and transient conditions
[69]. The mixed sensitivity based H∞ in the linear matrix
inequality framework is used for the design of a UPFC as a
damping device and is applied in a two-area power system to damp
inter-area oscillations [67]. A UPFC damping controller, designed
based on modal control theory using the linearised equations of the
power system, simultaneously improves power flow control and
stability of a combined wave and wind energy system connected to
a bulk power system [152]. To ensure the dc link voltage stability
under faults, a NPC multi-level UPFC is proposed with decoupled
power linear controllers in combination with the real-time
generation of pulse-width modulation (PWM) and balancing of dc
link capacitor voltages using both converters [161].

7.2 Advanced control

7.2.1 Decoupled control: Independent control of real and reactive
power allows operation under unbalanced conditions [33].
Decoupled control of real and reactive power through a
transmission line using a PWM-based UPFC is studied [68].

7.2.2 Vector control: Vector control of UPFC ensures the
independent control of active and reactive power [19, 35].

7.2.3 Preventive control: A proposed predictive control scheme
for UPFC provides better transient performance in comparison
with decoupled control [17]. Preventive control actions, by
adjusting the UPFC reference signals, are proposed to enhance
power system static and dynamic security [75].

7.2.4 Coordinated control: The coordinated control of UPFC and
power system stabiliser (PSS) enhances power system small signal
stability [71]. An active power coordination controller is proposed
to avoid excessive instability of the UPFC dc link capacitor voltage
during transient states [81, 101]. A reactive power coordination
controller is also proposed to reduce UPFC bus voltage excursions
during reactive power transfers [81]. An interaction indicator is
proposed that shows if the interactions among multiple control
functions of the UPFC cause power system stability problems [85].

7.2.5 Sliding mode control: An advanced nonlinear direct power
control, based on sliding mode control theory, is proposed for the
UPFC with a matrix converter (vector switching converter) [129,
160], as well as for the UPFC with a neutral point clamped
converter [143]. A terminal sliding mode controller for the UPFC
with an adaptive observer is proposed to operate under transient
and steady state conditions [162].

7.2.6 Robust control: A robust H∞ UPFC controller improves
power system stability [53]. A nonlinear finite time controller,
based on direct Lyapunov stability theory, needs significantly
reduced convergence time and is robust against parameter
uncertainties [141, 151]. A nonlinear dynamic control for a UPFC
is proposed that effectively damps oscillations over a wide range of
operating conditions [115].

7.2.7 Adaptive control: To improve transient stability, in the
conventional PI controller of UPFC, a self-tuning controller is
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added, which is composed of an adaptive constrained recursive
least squares identifier and a pole shift controller [157]. A discrete
control strategy, by adaptively operating the UPFC, improves
transient stability [91].

7.2.8 Hybrid control: A combined linear and nonlinear control
strategy for the UPFC helps improve transient stability [70]. An
advanced control, which combines phase angle control and cross
coupling control, achieves a quick response of active and reactive
power without power fluctuations [39, 60], as well as improved
transient performance [98].

7.3 Intelligent control

7.3.1 Neural network (NN): A radial basis function NN
(RBFNN) controller for the UPFC using a direct adaptive control
scheme improves transient stability [54, 94]. An on-line trained
RBFNN controller for the UPFC is used for power flow control
and voltage support [130]. Continually online trained NN
controllers for the UPFC using an indirect adaptive control scheme
improve damping during transient and dynamic control [89]. An
optimal NN controller for UPFC, using wide area signals, enhances
damping of inter-area and intra-area modes of oscillations [111].

7.3.2 Fuzzy logic: A Mamdani type fuzzy logic controller for
UPFC improves transient stability [21]. A Takagi–Sugeno-type
fuzzy logic controller for UPFC significantly reduced inter-area
and local mode oscillations [40]. Fuzzy logic controllers improve
the dynamic response of the UPFC during faults and unbalanced
network conditions [132].

7.3.3 Genetic algorithm (GA): A UPFC, tuned by a GA, damps
the rotor speed oscillations of fixed speed wind turbines [116].

7.3.4 Particle swarm optimisation (PSO): PSO is proposed for
the individual design of the UPFC and PSS to damp low-frequency
oscillations [100]. PSO computes the optimal parameter settings of
the output feedback UPFC controller for damping of
electromechanical oscillations [121, 122, 127].

7.3.5 Hybrid systems: Two online trained fuzzy NN controllers
for the UPFC are proposed to improve power system dynamic
control performance [106]. An adaptive neurofuzzy inference
control system for the UPFC independently controls the real and
reactive power flow over a wide range of possible operating points
and extreme conditions [136]. A decision tree-induced fuzzy rule-

based relaying scheme is proposed that provides robust protection
to the transmission line including UPFC and wind farm [166]. An
intelligent damping controller for the UPFC includes a functional
link Elman NN, a genetic ant colony optimisation algorithm and a
PI derivative linear damping controller [175]. A hybrid GA in
combination with the gravitational search algorithm is proposed for
tuning damping controller parameters for a UPFC [178]. A UPFC
based on the fuzzy logic controller, with its rules being derived
from sliding mode control theory, improves transient stability
[180].

8 Allocation methods
UPFCs are expensive, so their optimal location has to be
determined. The UPFC allocation methods are classified as
analytical, numerical, and heuristic. An exhaustive search
analytical method guarantees the finding of the optimal UPFC
allocation; however, it necessitates huge computational time for
large real-world power systems.

Nonlinear programming is the most efficient among the
available numerical methods for UPFC allocation.

Heuristic optimisation methods are usually robust and find near-
optimal solutions for complex and large-scale UPFC allocation
problems. Generally, heuristic methods require high-computational
time; however, this limitation is not necessarily critical in UPFC
allocation problems.

Table 1 introduces a taxonomy of models and methods for
optimal allocation of UPFCs in power systems. 

8.1 Analytical methods

The maximum power transfer is analytically calculated considering
UPFC location and constraints [62]. An exhaustive search finds the
optimal number, location, size, and parameter settings of multiple
UPFCs [144].

8.2 Numerical methods

An augmented Lagrange multipliers method computes the optimal
location of the UPFC [36]. An exhaustive search in combination
with nonlinear programming finds the optimal number, location,
and parameter settings of UPFCs [131].

Table 1 Taxonomy of models and methods for optimal allocation of UPFCs
Reference Published Number of

UPFCs
Design variables Load profile Objective Objective Function Method

 [36] September 1999 multiple location + size two load levels single min cost Lagrange multipliers
 [57] June 2001 single location + settings one load level single min power loss practical heuristic
 [78] June 2004 single location one load level single max voltage stability practical heuristic
 [92] September 2005 single location one load level single max voltage stability practical heuristic
 [93] February 2006 single location + settings one load level single max social welfare practical heuristic
 [99] February 2007 single location one load level single min operational cost practical heuristic
 [117] March 2009 single location + settings three load levels single min generation cost practical heuristic
 [124] July 2010 single location + size multi-load level single min congestion cost practical heuristic
 [131] February 2011 multiple number + location + 

settings
one load level single min operational cost nonlinear

programming
 [140] July 2012 single location + size + settings multi-load level single min total system cost PSO
 [144] October 2012 multiple number + location + 

size + settings
one load level single max social welfare exhaustive search

 [148] March 2013 single location + settings one load level single max damping ratio genetic algorithm
 [165] November 2014 single location + size one load level single max loading margin practical heuristic
 [167] January 2005 single location + size one load level single min power loss hybrid heuristic
 [182] July 2016 single location + settings one load level multiple multi-objective with

weights
hybrid heuristic

 [187] October 2016 multiple location + settings one load level single min load curtailment practical heuristic
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8.3 Heuristic methods

8.3.1 Genetic algorithm (GA): GA computes the optimal location
and control parameters of a UPFC to maximise the damping of
electromechanical oscillations [148].

8.3.2 Particle swarm optimisation (PSO): PSO is proposed to
find the optimal location and size of a single UPFC to manage
congestion and minimise total system cost [140].

8.3.3 Hybrid heuristic methods: An artificial bee colony
algorithm finds the optimum location and gravitational search
algorithm finds the optimum size of a UPFC [167]. A hybrid
imperialist competitive algorithm and pattern search method finds
the UPFC location and the minimum load shedding to prevent
voltage collapse [182].

8.3.4 Practical heuristic algorithms: A sensitivity-based method
is proposed to find the suitable location of a single UPFC [57]. A
heuristic approach, based on voltage stability indicator, is proposed
to find the suitable location of a single UPFC, considering also a
list of the most severe contingencies [78, 92]. A sensitivity based
approach finds a suitable location and an OPF provides the
parameter settings of a single UPFC [93]. A sensitivity-based
screening technique computes the suitable location of a single
UPFC [99]. A sensitivity method finds the optimal location and an
IPM finds the optimal size of a UPFC [124]. A sensitivity method
finds the location and size of a UPFC to enhance static voltage
stability [165]. A sensitivity method finds the location of UPFCs to
minimise load curtailment [187].

9 Simulation tools
In UPFC research and development, simulation tools have been
proved very useful by implementing various tasks, including the
validation of various UPFC steady state models, dynamic models,
converter topologies, and control methods. Indicative applications
of selected simulation tools are presented in the following.

An EMTP simulation tool has been used to validate steady-state
and dynamic UPFC models [9] and to verify various UPFC control
methods [7, 10, 12, 23, 26].

The PSCAD/EMTDC simulation tool has been used to validate
a transient stability UPFC model [60]; to verify various UPFC
control methods [24, 35, 89]; to analyse the dynamic performance
of a UPFC with H-bridge modules [79, 109]; to validate an
analytical frequency response characteristics of the UPFC [74]; to
compute the optimal location of a single UPFC, considering critical
line contingencies and a system loading distribution factor [117];
and to study a UPFC topology based on two shunt converters and a
series capacitor [128].

A Matlab/Simulink simulation tool has been used to validate a
steady state [30] and a dynamic UPFC model [87]; to verify
various UPFC control methods [25, 120, 150]; to study power
system protection in the presence of UPFC [97, 142, 155]; to
analyse the dynamic performance of a UPFC without a dc link
capacitor [108]; and to show that a UPFC topology with only four
IGBT switches for each one of the shunt and series converters
improves system transient stability [133].

PowerWorld simulation tool has been used to compute available
transfer capability in power systems with UPFCs [77] and to
validate a current-based power flow model for UPFC [149].

A real-time power system simulator, interfaced through the
hardware in the loop with multiple UPFCs, is capable of rapidly
testing UPFC control interactions [126].

10 Future research
10.1 Cost reduction

In the smart power systems era, the ever increasing penetration of
variable energy resources is expected to increase the need for
widespread use of UPFC technology. Such a need would require
research and development efforts to reduce UPFC equipment cost,
which includes the cost of design, materials, and manufacturing.

As an example, economies of scale and new semiconductor
materials with reduced cost and appropriate technical
characteristics for use in UPFC would help decrease UPFC
equipment cost.

10.2 Topologies

Research and development on topologies can help reduce cost and
improve UPFC performance. As an example, the dc link UPFC
(Fig. 1) is the standard topology. An alternative topology called the
ac link UPFC has been introduced [139]. A detailed comparison
(cost, size, and complexity) of the ac and dc link UPFC is proposed
as a future research.

10.3 Experimental validation

Various models and methods have been developed for power
systems with UPFCs. It would be interesting these models and
methods being verified not only through software simulation but
also using actual equipment or laboratory prototype or real-time
hardware in the loop simulations.

10.4 Models and simulation methods

For a widespread application of UPFCs, new models, appropriate
for UPFC feasibility studies, have to be developed. Moreover, new
methodologies and algorithms are needed for the integration of
UPFCs into smart power system operations. Another research area
is to study the effect of UPFCs on the different types of power
system protection.

10.5 Control methods

Control methods are needed to replace very specific UPFC control
algorithms, which are obsolete with changes to the smart power
system, with control algorithms having a reconfigurable
architecture. UPFC control algorithms have to use data from
phasor measurement units (PMUs). To maximise power system
benefits, there is a need to develop a wide area coordinated control
algorithms that would leverage the complementary characteristics
of multiple UPFCs, PMUs, and other new control technologies.

10.6 Allocation methods

To maximise power system benefits, it is needed to coordinate the
allocation of UPFCs, PMUs, capacitors, protection devices, and
other FACTS controllers. Moreover, the reviewed allocation
methods consider only loads with constant active and reactive
power; however, more accurate load models have to be considered
using more general and practical load models.

10.7 Simulation tools

The forthcoming smart power system is a large cyber-physical
system (CPS) with many sensors, controllers, and information and
communication technologies. The simulation tools have to be
upgraded in order to model and simulate together all these new
technologies of the CPS.

10.8 Collaboration

To accelerate the widespread application of UPFC, a research
collaboration among academic institutions, power system
operators, and UPFC manufacturers should be encouraged.

11 Conclusions
This study introduces a thorough description of the state-of-the-art
models and methods for the analysis and control of UPFCs in smart
power systems, analysing and classifying current and future
research trends in this field. The most common applications of
UPFCs include active and reactive power flow control, voltage
control, reactive power compensation, improvement of transient
stability, and damping of inter-area and intra-area oscillations. The
most frequently used methods for the control of the UPFC are
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intelligent control schemes as well as various advanced control
techniques. The most frequently used techniques for the solution of
the UPFC allocation problem are various practical heuristic
algorithms. Future research areas include UPFC equipment cost
reduction, new cost-effective UPFC topologies, and architectures
with experimental validation, UPFC control algorithms with
reconfigurable architecture, wide area coordinated control
algorithms, and new models, methods, and simulation tools for the
integration of UPFCs into smart power system operations and
planning.
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